Morality Games
291
Fig. 1 The Prisoner’s
Dilemma. Player 1’s available
strategies (C and D, which
stand for cooperate and
defect, respectively) are
represented as rows. Player
2’s available strategies (also
C and D) are represented as
columns. Player 1’s payoffs
are represented at the
intersection of each row and
column. For example, if
player 1 plays D and player 2
plays C, player 1’s payoff is
b. The Nash equilibrium of
the game is (D, D). It is
indicated with a circle
[Matrix Diagram]
C D
C b-c -c
D b 0
Game theory has traditionally been applied in situations where players are ratio-
nal decision makers who deliberately maximize their payoffs, such as pricing
decisions of firms (Tirole, 1988) or bidding in auctions (Milgrom & Weber, 1982).
In these contexts, behavior is expected to be consistent with a Nash equilibrium,
otherwise one of the agents—who are actively deliberating about what to do—
would realize she could benefit from deviating from the prescribed strategy.
However, game theory also applies to evolutionary and learning processes, where
agents do not deliberately choose their behavior in the game, but play according to
strategies with which they are born, imitate, or otherwise learn. Agents play a game
and then “reproduce” based on their payoffs, where reproduction represents off-
spring, imitation, or learning. The new generation then play the game, and so on. In
such settings, if a mutant does better (mutation can be genetic or can happen when
agents experiment), then she is more likely to reproduce or her behavior imitated or
reinforced, causing the behavior to spread. This intuition is formalized using mod-
els of evolutionary dynamics (e.g., Nowak, 2006).
The key result for evolutionary dynamic models is that, except under extreme
conditions, behavior converges to Nash equilibria. This result rests on one simple,
noncontroversial assumption shared by all evolutionary dynamics: Behaviors that
are relatively successful will increase in frequency. Based on this logic, game theory
models have been fruitfully applied in biological contexts to explain phenomena
such as animal sex ratios (Fisher, 1958), territoriality (Smith & Price, 1973), coop-
eration (Trivers, 1971), sexual displays (Zahavi, 1975), and parent–offspring con-
flict (Trivers, 1974). More recently, evolutionary dynamic models have been applied
in human contexts where conscious deliberation is believed to not play an important
role, such as in the adoption of religious rituals (Sosis & Alcorta, 2003), in the
expression and experience of emotion (Frank, 1988; Winter, 2014), and in the use
of indirect speech (Pinker, Nowak, & Lee, 2008).
HOUSE_OVERSIGHT_015503
Discussion 0
No comments yet
Be the first to share your thoughts on this epstein document