This document appears to be a page (251) from a book or scientific article discussing mathematical history, specifically the solvability of Fermat's Last Theorem, Diophantine equations, and the Four Color Conjecture. It details the work of mathematicians like Yuri Matiyasevich, Julia Robinson, and Andrew Wiles, noting Wiles' secret work on Fermat's theorem at Princeton leading up to his 1995 announcement. The document bears a 'HOUSE_OVERSIGHT' Bates stamp, suggesting it was part of a larger production of documents to Congress, likely related to investigations into Jeffrey Epstein's connections with the scientific community.
| Name | Role | Context |
|---|---|---|
| Yuri Matiyasevich | Mathematician |
Filled in the missing piece in Julia Robinson’s proof in 1970; used reduction method involving Turing machines.
|
| Julia Robinson | Mathematician |
Author of a proof related to Diophantine equations.
|
| Fermat | Mathematician (Historical) |
Referenced regarding Fermat's Last Theorem.
|
| Keijo Ruohonen | Researcher/Mathematician |
Demonstrated rewriting of Diophantine equations in 1972.
|
| Christoph Baxa | Researcher/Mathematician |
Demonstrated rewriting of Diophantine equations in 1993.
|
| J.P. Jones | Academic |
Of the University of Calgary; showed logic limit for regular Diophantine equations in 1993.
|
| Andrew Wiles | English Mathematics Professor |
Professor at Princeton; secretly worked on Fermat's Last Theorem; announced solution in 1995.
|
| Andrew Wiles' Wife | Spouse |
The only person Wiles told about his potential solution in late 1993.
|
| Name | Type | Context |
|---|---|---|
| University of Calgary |
Institution where J.P. Jones worked.
|
|
| Princeton |
University where Andrew Wiles was a professor.
|
|
| House Oversight Committee |
Implied by the Bates stamp 'HOUSE_OVERSIGHT'.
|
"Can humans solve ‘unsolvable’ problems?"Source
"Given an arbitrary map on a Euclidean plane, show the map can be colored in a maximum of four colors such that no adjacent area shares the same color."Source
"Finally, we have a proof that Fermat’s Last Theorem is unsolvable by a computer – or at least by a general purpose algorithm running on a computer."Source
"When I say secretly, he had not told anyone in his department, and only told his wife late in 1993 when he suspected he might have a solution."Source
Complete text extracted from the document (2,387 characters)
Discussion 0
No comments yet
Be the first to share your thoughts on this epstein document